Links

Tools

Export citation

Search in Google Scholar

CVS Filtering of 3D Turbulent Mixing Layers Using Orthogonal Wavelets

Journal article published in 2000 by Kai Schneider, Marie Farge ORCID, Giulio Pellegrino, Michael Rogers,
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Coherent Vortex Simulation (CVS) filtering has been applied to Direct Numerical Simulation (DNS) data of forced and unforced time-developing turbulent mixing layers. CVS filtering splits the turbulent flow into two orthogonal parts, one corresponding to coherent vortices and the other to incoherent background flow. We have shown that the coherent vortices can be represented by few wavelet modes and that these modes are sufficient to reproduce the vorticity probability distribution function (PDF) and the energy spectrum over the entire inertial range. The remaining incoherent background flow is homogeneous, has small amplitude, and is uncorrelated. These results are compared with those obtained for the same compression rate using large eddy simulation (LES) filtering. In contrast to the incoherent background flow of CVS filtering, the LES subgrid scales have a much larger amplitude and are correlated, which makes their statistical modeling more difficult.