Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 9(99), p. 091905

DOI: 10.1063/1.3631725

Links

Tools

Export citation

Search in Google Scholar

Tuning thermal transport in nanotubes with topological defects

Journal article published in 2011 by Jian Wang, Liang Li, Jian-Sheng Wang ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Using the atomistic nonequilibrium Green’s function, we find that thermal conductance of carbon nanotubes with presence of topological lattice imperfects is remarkably reduced, due to the strong Rayleigh scattering of high-frequency phonons. Phonon transmission across multiple defects behaves as a cascade scattering based with the random phase approximation. We elucidate that phonon scattering by structural defects is related to the spatial fluctuations of local vibrational density of states (LVDOS). An effective method of tuning thermal transport in low-dimensional systems through the modulation of LVDOS has been proposed. Our findings provide insights into experimentally controlling thermal transport in nanoscale devices.