American Chemical Society, Chemistry of Materials, 9(23), p. 2295-2302, 2011
DOI: 10.1021/cm1021596
Full text: Download
Achieving control over the nanomorphology of blend films of the fullerene derivative [6,6]-phenyl C61-butyric acid methyl ester, PCBM, with light-absorbing conjugated polymers is an important challenge in the development of efficient solution-processed photovoltaics. Here, three new polyfluorene copolymers are presented, tailored for enhanced miscibility with the fullerene through the introduction of polymer segments with modified side chains, which enhance the polymer’s polar character. The composition of the spincoated polymer:PCBM films is analyzed with dynamic secondary ion mass spectrometry (dSIMS). The dSIMS depth profiles demonstrate compositional variations perpendicular to the surface plane, as a result of vertical phase separation, directed by the substrate. These variations propagate to a higher degree through the film for the polymers with a larger fraction of modified side chains. The surface composition of the films is studied by Near-edge X-ray absorption fine structure spectroscopy (NEXAFS). Quantitative analysis of the NEXAFS spectra through a linear combination fit with the spectra of the pure components yields the surface composition. The resulting blend ratios reveal polymer-enrichment of the film surface for all three blends, which also becomes stronger as the polar character of the polymer increases. Comparison of the NEXAFS spectra collected with two different sampling depths shows that the vertical composition gradient builds up already in the first nanometers underneath the surface of the films. The results obtained with this new series of polymers shed light on the onset of formation of lamellar structures in thin polymer:PCBM films prepared from highly volatile solvents.