Published in

The Company of Biologists, Journal of Experimental Biology, 2013

DOI: 10.1242/jeb.082925

Links

Tools

Export citation

Search in Google Scholar

Finding the best estimates of metabolic rates in a coral reef fish

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Summary Metabolic rates of aquatic organisms are estimated from measurements of oxygen consumption rates (ṀO2) through swimming and resting respirometry. These distinct approaches are increasingly used in eco- and conservation physiology studies; however, few studies have tested whether they yield comparable results. We examined whether two fundamental ṀO2 measures, standard metabolic rate (SMR) and maximum metabolic rate (MMR), vary based on the method employed. Ten bridled monocle bream (Scolopsis bilineatus) were exercised using (1) a critical swimming speed (Ucrit) protocol, (2) a 15 min exhaustive chase protocol and (3) a 3 min exhaustive chase protocol followed by brief air exposure. Protocol (1) was performed in a swimming respirometer whereas protocols (2) and (3) were followed by resting respirometry. SMR estimates in swimming respirometry were similar to those in resting respirometry when a three-parameter exponential or power function was used to extrapolate the swimming speed-ṀO2 relationship to zero swimming speed. In contrast, MMR using the Ucrit protocol was 36% higher than MMR derived from the 15 min chase protocol and 23% higher than MMR using the 3 min chase 1 min air exposure protocol. For strong steady (endurance) swimmers, such as S. bilineatus, swimming respirometry can produce more accurate MMR estimates than exhaustive chase protocols because oxygen consumption is measured during exertion. However, when swimming respirometry is impractical, exhaustive chase protocols should be supplemented with brief air exposure to improve measurement accuracy. Caution is warranted when comparing MMR estimates obtained with different respirometry methods unless they are cross-validated on a species-specific basis.