Published in

Springer, Journal of Muscle Research and Cell Motility, 4-5(36), p. 349-357, 2015

DOI: 10.1007/s10974-015-9424-2

Links

Tools

Export citation

Search in Google Scholar

Extracellular stimulation with human "noisy" electromyographic patterns facilitates myotube activity

Journal article published in 2015 by M. Sciancalepore, T. Coslovich, P. Lorenzon, G. Ziraldo ORCID, G. Taccola
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Electrical stimulation (ES) of skeletal muscle partially mimics the benefits of physical activity. However, the stimulation protocols applied clinically to date, often cause unpleasant symptoms and muscle fatigue. Here, we compared the efficiency of a "noisy" stimulus waveform derived from human electromyographic (EMG) muscle patterns, with stereotyped 45 and 1 Hz electrical stimulations applied to mouse myotubes in vitro. Human gastrocnemius medialis electromyograms recorded from volunteers during real locomotor activity were used as a template for a noisy stimulation, called EMGstim. The stimulus-induced electrical activity, intracellular Ca(2+) dynamics and mechanical twitches in the myotubes were assessed using whole-cell perforated patch-clamp, Ca(2+) imaging and optical visualization techniques. EMGstim was more efficient in inducing myotube cell firing, [Ca(2+)]i changes and contractions compared with more conventional electrical stimulation. Its stimulation strength was also much lower than the minimum required to induce contractions via stereotyped stimulation protocols. We conclude that muscle cells in vitro can be more efficiently depolarized using the "noisy" stochastic stimulation pattern, EMGstim, a finding that suggests a way to favor a higher level of electrical activity in a larger number of cells.