Published in

American Chemical Society, Inorganic Chemistry, 12(49), p. 5706-5714, 2010

DOI: 10.1021/ic100751a

Links

Tools

Export citation

Search in Google Scholar

Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nanoparticles of iron(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition "moves" towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15-20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the color change between the LS (violet) and HS (colorless) states in an organic solvent suspension. The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications.