Published in

American Chemical Society, Biochemistry, 1(45), p. 249-262, 2005

DOI: 10.1021/bi0515265

Links

Tools

Export citation

Search in Google Scholar

Characterization of theDesulfovibrio desulfuricansATCC 27774 DsrMKJOP ComplexA Membrane-Bound Redox Complex Involved in the Sulfate Respiratory Pathway

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sulfate-reducing organisms use sulfate as an electron acceptor in an anaerobic respiratory process. Despite their ubiquitous occurrence, sulfate respiration is still poorly characterized. Genome analysis of sulfate-reducing organisms sequenced to date permitted the identification of only two strictly conserved membrane complexes. We report here the purification and characterization of one of these complexes, DsrMKJOP, from Desulfovibrio desulfuricans ATCC 27774. The complex has hemes of the c and b types and several iron-sulfur centers. The corresponding genes in the genome of Desulfovibrio vulgaris were analyzed. dsrM encodes an integral membrane cytochrome b; dsrK encodes a protein homologous to the HdrD subunit of heterodisulfide reductase; dsrJ encodes a triheme periplasmic cytochrome c; dsrO encodes a periplasmic FeS protein; and dsrM encodes another integral membrane protein. Sequence analysis and EPR studies indicate that DsrJ belongs to a novel family of multiheme cytochromes c and that its three hemes have different types of coordination, one bis-His, one His/Met, and the third a very unusual His/Cys coordination. The His/Cys-coordinated heme is only partially reduced by dithionite. About 40% of the hemes are reduced by menadiol, but no reduction is observed upon treatment with H2 and hydrogenase, irrespective of the presence of cytochrome c3. The aerobically isolated Dsr complex displays an EPR signal with similar characteristics to the catalytic [4Fe-4S]3+ species observed in heterodisulfide reductases. Further five different [4Fe-4S](2+/1+) centers are observed during a redox titration followed by EPR. The role of the DsrMKJOP complex in the sulfate respiratory chain of Desulfovibrio spp. is discussed.