Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (668), 2001

DOI: 10.1557/proc-668-h5.4

Links

Tools

Export citation

Search in Google Scholar

Characterization of the CuGaSe2/ZnSe Interface Using Kelvin Probe Force Microscopy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTTo improve the efficiency of heterostructure solar cells based on chalcopyrite semiconductors a good understanding of the interface properties is crucial. By Kelvin Probe Force Microscopy it is possible to obtain laterally resolved images of the work function of semiconductor surfaces in addition to the topographical information usually obtained by noncontact atomic force microscopy. We studied the CuGaSe2/ZnSe interface prepared by growth of CuGaSe2 onto the (110) face of freshly cleaved ZnSe single crystals using chemical vapor deposition. We observed different work function values for different crystal facets on single CuGaSe2 grains. From the obtained work function data and surface photovoltage measurements a schematic band diagram for the CuGaSe2/ZnSe heterostructure is proposed.