Published in

American Institute of Physics, Journal of Applied Physics, 9(107), p. 093104

DOI: 10.1063/1.3357291

Links

Tools

Export citation

Search in Google Scholar

Tunable slow light in semiconductor metamaterial in a broad terahertz regime

Journal article published in 2010 by Qiang Bai, Cong Liu, Chen Cheng, Ming Kang, Hui-Tian Wang, Jing Chen ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We demonstrate theoretically and numerically that tunable slow light can be realized in planar semiconductor metamaterials with the unit cell composed of two different elements in a broad terahertz regime. In the unit cell, one element is a semiconductor split ring resonator and another one is a semiconductor cut wire. The interaction between the two elements of the unit cell, induced directly or indirectly by the incident electromagnetic wave, leads to a transparent window, resembling the classical analog of electromagnetically induced transparency. This transparent window, caused by the coupling of bright-bright modes or dark-bright modes, can be continuously tuned in a broad frequency regime. The strong normal phase dispersion in the vicinity of this transparent window results in the slow light effect. This scheme provides an alternative way to achieve tunable slow light in a broad frequency band and can find important applications in active and reversibly tunable slow light devices.