Published in

American Chemical Society, Journal of Physical Chemistry C, 24(113), p. 10740-10746, 2009

DOI: 10.1021/jp902818m

Links

Tools

Export citation

Search in Google Scholar

Characterization of Supported Vanadium Oxide Species on Silica: A Periodic DFT Investigation

Journal article published in 2009 by Mazharul M. Islam, Dominique Costa, Monica Calatayud, Frederik Tielens ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The geometry, energetic, and spectroscopic properties of molecular structures of silica-supported vanadium oxide catalysts are studied using periodic density functional calculations. Isolated vanadia units deposed on amorphous silica are modeled at low coverage, 0.44 atoms nm(-2). The models are built following the grafting process through the reaction of a vanadium precursor with surface silanols: OV(OH)(3) + (Si-OH)(n) -> OV(OH)(3-n)(O-Si)(n) + nH(2)O (with n = 1-3). The most stable grafted structures involve one vanadyl group together with n(V-O-Si) bonds. The predominance of the vanadate groups is analyzed as a function of hydration by means of atomistic thermodynamics. At dehydrated conditions, the trigrafted pyramidal OV(O-Si)(3) species are predominant, whereas partial hydration stabilizes digrafted OV(OH)(O-Si)(2) and monografted OV(OH)(2)(O-Si) species. The harmonic vibrational spectra for selected models are compared to recent experimental infrared and Raman data, for representative bands, and vibrational modes. Hydration effects are discussed in terms of thermodynamic stability and vibrational spectra. The results obtained in this study show that the pyramidal OV(O-Si)(3), digrafted OV(OH)(O-Si)(2), and monografted OV(OH)(2)(O-Si) models can exist at a support surface, a trend in agreement with recent experimental findings.