Published in

American Chemical Society, ACS Nano, 3(6), p. 1970-1978, 2012

DOI: 10.1021/nn3005262

Links

Tools

Export citation

Search in Google Scholar

Tunable Band Gaps and p-Type Transport Properties of Boron-Doped Graphenes by Controllable Ion Doping Using Reactive Microwave Plasma

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report tunable band gaps and transport properties of B-doped graphenes that were achieved via controllable doping through reaction with the ion atmosphere of trimethylboron decomposed by microwave plasma. Both electron energy loss spectroscopy and X-ray photoemission spectroscopy analyses of the graphene reacted with ion atmosphere showed that B atoms are substitutionally incorporated into graphenes without segregation of B domains. The B content was adjusted over a range of 0-13.85 atom % by controlling the ion reaction time, from which the doping effects on transport properties were quantitatively evaluated. Electrical measurements from graphene field-effect transistors show that the B-doped graphenes have a distinct p-type conductivity with a current on/off ratio higher than 10(2). Especially, the band gap of graphenes is tuned from 0 to ~0.54 eV with increasing B content, leading to a series of modulated transport properties. We believe the controllable doping for graphenes with predictable transport properties may pave a way for the development of graphene-based devices.