Published in

Wiley, Global Biogeochemical Cycles, 11(28), p. 1358-1370

DOI: 10.1002/2014gb004888

Links

Tools

Export citation

Search in Google Scholar

External total alkalinity loads versus internal generation: The influence of nonriverine alkalinity sources in the Baltic Sea

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study we first present updated riverine total alkalinity (TA) loads to the various Baltic Sea sub-basins, based on monthly measurements in 82 of the major rivers that represent 85% of the total runoff. Simulations in the coupled physical-biogeochemical BALTSEM model show that these river loads together with North Sea water inflows are not sufficient to reproduce observed TA concentrations in the system, demonstrating the large influence from internal sources. Budget calculations indicate that the required internal TA generation must be similar to river loads in magnitude. The non-riverine source in the system amounts to about 2.4 mmol m-2 d-1 on average. We argue here that the majority of this source is related to denitrification together with unresolved sediment processes such as burial of reduced sulfur and/or silicate weathering. This hypothesis is supported by studies on sediment processes on a global scale, and also by data from sediment cores in the Baltic Sea. In a model simulation with all internal TA sources and sinks switched on, the net absorption of atmospheric CO2 increased by 0.78 mol C m-2 y-1 compared to a simulation where TA was treated as a passive tracer. Our results clearly illustrate how pelagic TA sources together with anaerobic mineralization in coastal sediments generate a significant carbon sink along the aquatic continuum, mitigating CO2 evasions from coastal and estuarine systems.