Published in

IOP Publishing, New Journal of Physics, 11(14), p. 113009, 2012

DOI: 10.1088/1367-2630/14/11/113009

Links

Tools

Export citation

Search in Google Scholar

Tunability experiments at the FERMI@Elettra free-electron laser

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

FERMI@Elettra is a free electron-laser (FEL)-based user facility that, after two years of commissioning, started preliminary users’ dedicated runs in 2011. At variance with other FEL user facilities, FERMI@Elettra has been designed to deliver improved spectral stability and longitudinal coherence. The adopted scheme, which uses an external laser to initiate the FEL process, has been demonstrated to be capable of generating FEL pulses close to the Fourier transform limit. We report on the first instance of FEL wavelength tuning, both in a narrow and in a large spectral range (fine- and coarse-tuning). We also report on two different experiments that have been performed exploiting such FEL tuning. We used fine-tuning to scan across the 1s–4p resonance in He atoms, at ≈23.74 eV (52.2 nm), detecting both UV–visible fluorescence (4p–2s, 400 nm) and EUV fluorescence (4p–1s, 52.2 nm). We used coarse-tuning to scan the M4,5 absorption edge of Ge (∼29.5 eV) in the wavelength region 30–60 nm, measured in transmission geometry with a thermopile positioned on the rear side of a Ge thin foil.