Published in

American Chemical Society, Bioconjugate Chemistry, 5(26), p. 802-806, 2015

DOI: 10.1021/acs.bioconjchem.5b00101

Links

Tools

Export citation

Search in Google Scholar

Site-Specific Glycoconjugation of Protein via Bioorthogonal Tetrazine Cycloaddition with a Genetically Encoded trans-Cyclooctene or Bicyclononyne

Journal article published in 2015 by Takuya Machida, Kathrin Lang ORCID, Lin Xue, Jason W. Chin, Nicolas Winssinger
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Efficient access to proteins modified site-specifically with glycans is important in glycobiology and for therapeutic applications. Herein, we report a biocompatible protein glycoconjugation by inverse demand Diels-Alder reaction between tetrazine and trans-cyclooctene. Tetrazine functionalized glycans were obtained in one step by CuAAC (Cu-catalyzed alkyne azide cycloaddition) between azidoglycans and an alkyne-tetrazine adduct. Site-specific glycoconjugation was performed chemoselectively on a target protein in which a trans-cyclooctene derivatized lysine was genetically encoded. Glycoconjugation proceeded to completion on purified protein and was shown to be selective for the target protein in E. coli.