Published in

Cold Spring Harbor Laboratory; 1999, Cold Spring Harbor Symposia on Quantitative Biology, 0(77), p. 7-15

DOI: 10.1101/sqb.2013.77.017053

Links

Tools

Export citation

Search in Google Scholar

Surprises from the Chromosome Front: Lessons from Arabidopsis on Telomeres and Telomerase

Journal article published in 2012 by A. D. L. Nelson ORCID, D. E. Shippen
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Telomeres serve two vital functions: They act as a buffer against the end-replication problem, and they prevent chromosome ends from being recognized as double-strand DNA (dsDNA) breaks. These functions are orchestrated by the telomerase reverse transcriptase and a variety of telomere protein complexes. Here, we discuss our recent studies with Arabidopsis thaliana that uncovered a new and highly conserved telomere complex called CST (Cdc13/CTC1, STN1, TEN1). Formerly believed to be yeast specific, CST has now been identified as a key component of both plant and vertebrate telomeres, which is essential for genome integrity and stem cell viability. We also describe the unexpected discovery of alternative telomerase ribonucleoprotein complexes in Arabidopsis. Fueled by duplication and diversification of the telomerase RNA subunit and telomerase accessory proteins, these telomerase complexes act in concert to maintain genome stability. In addition to the canonical telomerase enzyme, one of two alternative telomerase ribonucleoprotein (RNP) complexes functions as a novel negative regulator of enzyme activity in response to genotoxic stress. These contributions highlight the immense potential of Arabidopsis in probing the depths of the chromosome end.