Published in

Wiley, Journal of the Peripheral Nervous System, 4(14), p. 279-284, 2009

DOI: 10.1111/j.1529-8027.2009.00239.x

Links

Tools

Export citation

Search in Google Scholar

Neuropathic pain is associated with increased nodal persistent Na + currents in human diabetic neuropathy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Peripheral nerve injury alters function and expression of voltage gated Na(+) channels on the axolemma, leading to ectopic firing and neuropathic pain/paresthesia. Hyperglycemia also affects nodal Na(+) currents, presumably due to activation of polyol pathway and impaired Na(+)-K(+) pump. We investigated changes in nodal Na(+) currents in peripheral sensory axons and their relation with pain in human diabetic neuropathy. Latent addition using computerized threshold tracking was used to estimate nodal persistent Na(+) currents in radial sensory axons of 81 diabetic patients. Of these, 36 (44%) had chronic neuropathic pain and severe paresthesia. Compared to patients without pain, those with pain had greater nodal Na(+) currents (p = 0.001), smaller amplitudes of sensory nerve action potentials (SNAP) (p = 0.0003), and lower hemoglobin A1c levels (p = 0.006). Higher axonal Na(+) conductance was associated with smaller SNAP amplitudes (p = 0.03) and lower hemoglobin A1c levels (p = 0.008). These results suggest that development of neuropathic pain depends on axonal hyperexcitability due to increased nodal Na(+) currents associated with structural changes, but the currents could also be affected by the state of glycemic control. Our findings support the view that altered Na(+) channels could be responsible for neuropathic pain/paresthesia in diabetic neuropathy.