Published in

SAGE Publications, Multiple Sclerosis Journal, 4(17), p. 411-422, 2011

DOI: 10.1177/1352458510394609

Links

Tools

Export citation

Search in Google Scholar

Distributed changes in default-mode resting-state connectivity in multiple sclerosis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: The default-mode network (DMN) has been increasingly recognized as relevant to cognitive status. Objectives: To explore DMN changes in patients with relapsing–remitting (RR) multiple sclerosis (MS) and to relate these to the cognitive status. Methods: Eighteen cognitively impaired (CI) and eighteen cognitively preserved (CP) RRMS patients and eighteen healthy controls (HCs), matched for age, sex and education, underwent neuropsychological evaluation and anatomical and resting-state functional MRI (rs-fMRI). DMN functional connectivity was evaluated from rs-fMRI data via independent component analysis. T2 lesion load (LL) was computed by a semi-automatic method and global and local atrophy was estimated by SIENAX and SPM8 voxel-based morphometry analyses from 3D-T1 images. Results: When the whole group of RRMS patients was compared with HCs, DMN connectivity was significantly weaker in the anterior cingulate cortex, whereas it was significantly weaker in the core but stronger at the periphery of the posterior cingulate cortex. These findings were more evident in CP than CI patients. Observed DMN changes did not correlate with global atrophy or T2-LL, but were locally associated with regional grey matter loss. Conclusion: Relapsing–remitting multiple sclerosis patients show a consistent dysfunction of DMN at the level of the anterior node. DMN distribution changes in the posterior node may reflect a possible compensatory effect on cognitive performance.