Published in

2008 IEEE Aerospace Conference

DOI: 10.1109/aero.2008.4526442

Links

Tools

Export citation

Search in Google Scholar

Utilizing Model Structure for Efficient Simultaneous Localization and Mapping for a UAV Application

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This contribution aims at unifying two recent trends in applied particle filtering (PF). The first trend is the major impact in simultaneous localization and mapping (SLAM) applications, utilizing the FastSLAM algorithm. The second one is the implications of the marginalized particle filter (MPF) or the Rao-Blackwellized particle filter (RBPF) in positioning and tracking applications. Using the standard FastSLAM algorithm, only low-dimensional vehicle models are computationally feasible. In this work, an algorithm is introduced which merges FastSLAM and MPF, and the result is an algorithm for SLAM applications, where state vectors of higher dimensions can be used. Results using experimental data from a UAV (helicopter) are presented. The algorithm fuses measurements from on-board inertial sensors (accelerometer and gyro) and vision in order to solve the SLAM problem, i.e., enable navigation over a long period of time.