Published in

Springer, Journal of Medical Systems, 11(38), 2014

DOI: 10.1007/s10916-014-0130-1

Springer Verlag, Journal of Medical Systems, 9(38)

DOI: 10.1007/s10916-014-0109-y

Links

Tools

Export citation

Search in Google Scholar

Video summarization based tele-endoscopy: a service to efficiently manage visual data generated during wireless capsule endoscopy procedure

Journal article published in 2014 by Irfan Mehmood ORCID, Sung Wook Baik, Dr. Muhammmad Sajjad ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Wireless capsule endoscopy (WCE) has great advantages over traditional endoscopy because it is portable and easy to use. More importantly, WCE combined with mobile computing ensures rapid transmission of diagnostic data to hospitals and enables off-site senior gastroenterologists to offer timely decision making support. However, during this WCE process, video data are produced in huge amounts, but only a limited amount of data is actually useful for diagnosis. The sharing and analysis of this video data becomes a challenging task due the constraints such as limited memory, energy, and communication capability. In order to facilitate efficient WCE data collection and browsing tasks, we present a video summarization-based tele-endoscopy service that estimates the semantically relevant video frames from the perspective of gastroenterologists. For this purpose, image moments, curvature, and multi-scale contrast are computed and are fused to obtain the saliency map of each frame. This saliency map is used to select keyframes. The proposed tele-endoscopy service selects keyframes based on their relevance to the disease diagnosis. This ensures the sending of diagnostically relevant frames to the gastroenterologist instead of sending all the data, thus saving transmission costs and bandwidth. The proposed framework also saves storage costs as well as the precious time of doctors in browsing patient's information. The qualitative and quantitative results are encouraging and show that the proposed service provides video keyframes to the gastroenterologists without discarding important information.