Published in

Taylor and Francis Group, Cell Cycle, 10(10), p. 1607-1617

DOI: 10.4161/cc.10.10.15566

Links

Tools

Export citation

Search in Google Scholar

The Cdc14B phosphatase displays oncogenic activity mediated by the Ras-Mek signaling pathway

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cdc14 is a dual-specific phosphatase with relevant functions during mitotic exit in yeast. The relevance of vertebrate Cdc14 phosphatases is not well understood due to the presence of two paralogs, Cdc14A and Cdc14B, and their dispensability for cell cycle progression. Here, we report that overexpression of mammalian Cdc14B, but not Cdc14A, leads to dramatic changes in morphology and malignant transformation of normal murine fibroblasts. Cdc14B disrupts the cytoskeletal F-actin organization with loss of actin stress fibers and vinculin adhesions in a phosphatase-dependent manner. These morphological changes are associated to cellular transformation, as Cdc14B-overexpressing cells display anchorage-independent growth and are able to form tumors in vivo. These alterations are similar to those induced by Ras oncogenes ,and both Cdc14B and H-RasV12 lead to similar changes in the transcriptional profile of transformed cells. Pharmacologic inhibition of the Ras-Mek pathway rescues these defects. These data suggest that Cdc14B, but not Cdc14A, is one of the few phosphatases that display oncogenic activity in mammals and point to the Ras-MAP kinase pathway as a major effector pathway during oncogenic transformation by Cdc14B.