Published in

Nature Research, Nature Physics, 9(3), p. 614-617, 2007

DOI: 10.1038/nphys655

Links

Tools

Export citation

Search in Google Scholar

The energization of relativistic electrons in the outer Van Allen radiation belt

Journal article published in 2007 by Yue Chen, Geoffrey D. Reeves ORCID, Reiner H. W. Friedel
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The origin and dynamics of the Van Allen radiation belts is one of the longest-standing questions of the space age, and one that is increasingly important for space applications as satellite systems become more sophisticated, smaller and more susceptible to radiation effects. The precise mechanism by which the Earth's magnetosphere is able to accelerate electrons from thermal to ultrarelativistic energies (E0.5 MeV) has been particularly difficult to definitively resolve. The traditional explanation is that large-scale, fluctuating electric and magnetic fields energize particles through radial diffusion1. More recent theories2, 3 and observations4, 5 have suggested that gyro-resonant wave–particle interactions may be comparable to or more important than radial diffusion. Using data collected simultaneously by multiple satellites passing through the magnetosphere at different distances from the Earth, we demonstrate that the latter of these is the dominant mechanism responsible for relativistic electron acceleration. Specifically, we identify frequent and persistent peaks in equatorial electron phase space density near or inside geosynchronous orbit that provide unambiguous evidence for local wave–particle acceleration. These observations represent an important step towards a more complete physical understanding of radiation belt dynamics and to the development of space-weather models.