Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Journal of Mass Spectrometry, 5(43), p. 572-586, 2008

DOI: 10.1002/jms.1344

Links

Tools

Export citation

Search in Google Scholar

Evaluation of glycosylation and malonylation patterns in flavonoid glycosides during LC/MS/MS metabolite profiling

Journal article published in 2007 by P. Kachlicki, J. Einhorn, D. Muth ORCID, L. Kerhoas, M. Stobiecki
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Flavonoid conjugates constitute several classes of plant phenolic secondary metabolites including many isomeric compounds differing in the hydroxylation pattern and substitution of their rings with different groups such as alkyls, acyls or sugars. These compounds occur in plant tissues mainly as glycosides and in many cases it is necessary to have reliable and detailed information concerning the structure of these natural products. Our results were obtained using leaf extracts of Arabidopsis thaliana and Lupinus angustifolius in which different glycosides of flavones, flavonols and isoflavones are present. Analysis of collision-induced dissociation (CID)/MS/MS spectra of protonated [M + H](+), sodiated [M + Na](+) or deprotonated [M - H](-) molecules recorded during HPLC runs may bring needed information in this respect. However, registration of mass spectra of [M + Na](+) ions with a good efficiency is possible only after post-column addition of a sodium acetate solution to the LC column eluate. The retention of sodium cation on the saccharidic parts of the molecule is observed after the CID fragmentation. In many cases, the location of this cation on the glycan attached to C-3 hydroxyl group of flavonol led to assignment of its structure. Additionally, the determination of the structure of the aglycone and of the sequence of the glycan part was made possible through the CID data obtained from the [M + H](+) and [M - H](-) ions. CID spectra show a different order of sugar elimination from hydroxyl groups at C-3 and C-7 in flavonol glycosides isolated from A. thaliana leaves and give sufficient information to discriminate flavonoid O-diglycosides from flavonoid di-O-glycosides.