Published in

Springer, Molecular and Cellular Biochemistry, 1-2(385), p. 309-309, 2013

DOI: 10.1007/s11010-013-1868-3

Springer, Molecular and Cellular Biochemistry, 1-2(385), p. 1-6, 2013

DOI: 10.1007/s11010-013-1806-4

Links

Tools

Export citation

Search in Google Scholar

LAMP2 as a marker of EBV-mediated B lymphocyte transformation in the study of lysosomal storage diseases

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Following the degradative pathway, vesicles loaded with extracellular material, eventually, dock and fuse with lysosomes, acquiring specific membrane markers of these organelles and acid hydrolases responsible for digest their content. The lysosomal-associated membrane protein 2 (LAMP-2), the best characterized lysosomal membrane protein, is found in late stages of endosome maturation and may be used as a marker of lysosome-associated membranes. Lysosomal storage disorders (LSDs) are described by the absence or deficiency in hydrolase activity leading to substrate accumulation within lysosomal components and to the onset of several diseases. It is known that lymphocytes infected by Epstein-Barr virus (EBV) are able to form cytoplasmic vacuoles, which work as a storage compartment for lysosomal acidic hydrolases. At the present study, we validate the EBV as a transforming agent of B lymphocytes in stability studies of long-term stored samples, since the methods used to keep samples in liquid nitrogen and thaw them have all proven to be efficient in samples frozen for up to 2 years. To confirm and investigate some of the most prevalent LSDs in the South of Brazil-Pompe, Fabry and Gaucher diseases-we first measured the enzymatic activity of α-glicosidase, α-galactosidase, and β-glicosidase in those cytoplasmic-formed vacuoles and then looked to LAMP-2 immunoreactivity by employing confocal microscopy techniques.