Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 13(89), p. 6142-6146, 1992

DOI: 10.1073/pnas.89.13.6142

Links

Tools

Export citation

Search in Google Scholar

The endoplasmic reticulum-sarcoplasmic reticulum connection: Distribution of endoplasmic reticulum markers in the sarcoplasmic reticulum of skeletal muscle fibers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The skeletal muscle sarcoplasmic reticulum (SR) was investigated for the presence of well-known endoplasmic reticulum (ER) markers: the lumenal protein BiP and a group of membrane proteins recognized by an antibody raised against ER membrane vesicles. Western blots of SR fractions revealed the presence of BiP in fast- and slow-twitch muscles of the rabbit as well as in rat and chicken muscles. Analyses of purified SR subfractions, together with cryosection immunofluorescence and immunogold labeling, revealed BiP evenly distributed within the longitudinal SR and the terminal cisternae. Within the terminal cisternae BiP appeared not to be mixed with calsequestrin but to be distributed around the aggregates of the latter Ca2+ binding protein. Of the various membrane markers only calnexin (91 kDa) was found to be distributed within both SR subfractions, whereas the other markers (apparent molecular masses of 64 kDa and 58 kDa and a doublet around 28 kDa) were concentrated in the terminal cisternae. These results suggest that the SR is a specialized ER subcompartment in which general markers, such as the ones we have investigated, coexist with the major SR proteins specifically responsible for Ca2+ uptake, storage, and release. The differential distribution of the ER markers reveals new aspects of the SR molecular structure that might be of importance for the functioning of the endomembrane system.