Published in

Elsevier, Remote Sensing of Environment, (154), p. 180-191, 2014

DOI: 10.1016/j.rse.2014.08.029

Links

Tools

Export citation

Search in Google Scholar

Model for microwave emission of a snow-covered ground with focus on L band

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Microwave radiometry L-band SMOS SMAP Radiative transfer Snow Soil freeze/thaw Passive L-band (1–2 GHz) observables are sensitive to surface soil moisture and ocean salinity, which is the core of the "soil moisture and ocean salinity" (SMOS) mission of the European Space Agency (ESA). This work investigates microwave emission processes that are important to link L-band brightness temperatures with soil freeze/ thaw states and the presence and the state of snow. To this end, a ground snow radiative transfer (GS RT) model has been developed on the basis of the "Microwave Emission Model of Layered Snowpacks" (MEMLS). Our model sensitivity study revealed that L-band emission of a freezing ground can be affected significantly by dry snow, which has been mostly disregarded in previous studies. Simulations suggest that even dry snow with mostly negligible absorption at the L-band can impact L-band emission of winter landscapes significantly. We found that impedance matching and refraction caused by a dry snowpack can increase or decrease L-band emission depending on the polarization and the observation angle. Based on the performed sensitivity study, these RT processes can be compensatory at vertical polarization and the observation angle of 50°. This suggests the use of vertical polarized brightness temperatures measured at around 50° in order to achieve segregated information on soil-frost. Furthermore, our simulations demonstrate a significant sensitivity of L-band emission at horizontal polarization with respect to the density of the lowest snow layer as the result of refraction and impedance matching by the snowpack.