Published in

Wiley, APMIS: Journal of Pathology, Microbiology and Immunology, 7-8(116), p. 629-637, 2008

DOI: 10.1111/j.1600-0463.2008.01037.x

Links

Tools

Export citation

Search in Google Scholar

Tumor dormancy and oncogene addiction

Journal article published in 2008 by Dean W. Felsher
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cancer is caused by genetic changes that activate oncogenes or inactivate tumor suppressor genes. The repair or inactivation of mutant genes may be effective in the treatment of cancer. Indeed, drugs that target oncogenes can be effective in the treatment of cancer. However, it is still unclear why the inactivation of a single cancer-associated gene would ever result in the elimination of tumor cells. In experimental transgenic mouse models the consequences of oncogene inactivation depend upon the genetic and cellular context. In some cases, oncogene inactivation results in the elimination of all or almost all tumor cells through apoptosis by the phenomenon described as oncogene addiction. In other cases, oncogene inactivation predominantly results in the terminal differentiation or cellular senescence of tumor cells. In yet others, oncogene inactivation results in the apparent loss of the neoplastic properties of tumor cells, which now appear and behave like normal cells; however, upon oncogene reactivation at least some of these cells rapidly recover their neoplastic phenotype. Thus, oncogene inactivation can result in a state of tumor dormancy. Hence, understanding when and how oncogene inactivation induces apoptosis, differentiation, and senescence within a tumor will be important when developing effective strategies for the treatment of cancer.