Published in

American Institute of Physics, Applied Physics Letters, 23(103), p. 232105

DOI: 10.1063/1.4840317

Links

Tools

Export citation

Search in Google Scholar

Characterization of metal contacts for two-dimensional MoS2 nanoflakes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

While layered materials are increasingly investigated for their potential in nanoelectronics, their functionality and efficiency depend on charge injection into the materials via metallic contacts. This work explores the characteristics of different metals (aluminium, tungsten, gold, and platinum) deposited on to nanostructured thin films made of two-dimensional (2D) MoS2 flakes. Metals are chosen based on their work functions relative to the electron affinity of MoS2. It is observed, and analytically verified that lower work functions of the contact metals lead to smaller Schottky barrier heights and consequently higher charge carrier injection through the contacts.