Published in

Taylor and Francis Group, Journal of Biomolecular Structure and Dynamics, 6(27), p. 867-887, 2010

DOI: 10.1080/073911010010524948

Links

Tools

Export citation

Search in Google Scholar

Evaluation of Elastic Rod Models with Long Range Interactions for Predicting Nucleosome Stability

Journal article published in 2010 by Yuriy V. Sereda ORCID, Thomas C. Bishop
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The ability of a dinucleotide-step based elastic-rod model of DNA to predict nucleosome binding free energies is investigated using four available sets of elastic parameters. We compare the predicted free energies to experimental values derived from nucleosome reconstitution experiments for 84 DNA sequences. Elastic parameters (conformation and stiffnessess) obtained from MD simulations are shown to be the most reliable predictors, as compared to those obtained from analysis of base-pair step melting temperatures, or from analysis of x-ray structures. We have also studied the effect of varying the folded conformation of nucleosomal DNA by means of our Fourier - filtering knock-out and knock-in procedure. This study confirmed the above ranking of elastic parameters, and helped to reveal problems inherent in models using only a local elastic energy function. Long-range interactions were added to the elastic-rod model in an effort to improve its predictive ability. For this purpose a Debye-Huckel energy term with a single, homogenous point charge per base-pair was introduced. This term contains only three parameters, - its weight relative to the elastic energy, the Debye screening length, and a minimum sequence distance for including pairwise interactions between charges. After optimization of these parameters, our Debye-Huckel term is attractive, and yields the same level of correlation with experiment (R=0.75) as was achieved merely by varying the nucleosomal shape in the elastic-rod model. We suggest this result indicates a linker DNA - histone attraction or, possibly, entropic effects, that lead to a stabilization of a nucleosome away from the ends of DNA segments longer than 147 bp. Such effects are not accounted for by a localized elastic energy model.