Published in

Elsevier, Neuroscience & Biobehavioral Reviews, 4(30), p. 511-525

DOI: 10.1016/j.neubiorev.2005.09.003

Links

Tools

Export citation

Search in Google Scholar

The neurobiological basis of temperament: Towards a better understanding of psychopathology

Journal article published in 2006 by Sarah Whittle, Nicholas B. Allen ORCID, Dan I. Lubman, Murat Yücel ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The ability to characterise psychopathologies on the basis of their underlying neurobiology is critical in improving our understanding of disorder etiology and making more effective diagnostic and treatment decisions. Given the well-documented relationship between temperament (i.e. core personality traits) and psychopathology, research investigating the neurobiological substrates that underlie temperament is potentially key to our understanding of the biological basis of mental disorder. We present evidence that specific areas of the prefrontal cortex (including the dorsolateral prefrontal, anterior cingulate, and orbitofrontal cortices) and limbic structures (including the amygdala, hippocampus and nucleus accumbens) are key regions associated with three fundamental dimensions of temperament: Negative Affect, Positive Affect, and Constraint. Proposed relationships are based on two types of research: (a) research into the neurobiological correlates of affective and cognitive processes underlying these dimensions; and (b) research into the neurobiology of various psychopathologies, which have been correlated with these dimensions. A model is proposed detailing how these structures might comprise neural networks whose functioning underlies the three temperaments. Recommendations are made for future research into the neurobiology of temperament, including the need to focus on neural networks rather than individual structures, and the importance of prospective, longitudinal, multi-modal imaging studies in at-risk youth.