Published in

Cell Press, Cell Reports, 5(14), p. 1195-1205, 2016

DOI: 10.1016/j.celrep.2015.12.092

Links

Tools

Export citation

Search in Google Scholar

A CREB-Sirt1-Hes1 Circuitry Mediates Neural Stem Cell Response to Glucose Availability

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Adult neurogenesis plays increasingly recognized roles in brain homeostasis and repair and is profoundly affected by energy balance and nutrients. We found that the expression of Hes-1 (hairy and enhancer of split 1) is modulated in neural stem and progenitor cells (NSCs) by extracellular glucose through the coordinated action of CREB (cyclic AMP responsive element binding protein) and Sirt-1 (Sirtuin 1), two cellular nutrient sensors. Excess glucose reduced CREB-activated Hes-1 expression and results in impaired cell proliferation. CREB-deficient NSCs expanded poorly in vitro and did not respond to glucose availability. Elevated glucose also promoted Sirt-1-dependent repression of the Hes-1 promoter. Conversely, in low glucose, CREB replaced Sirt-1 on the chromatin associated with the Hes-1 promoter enhancing Hes-1 expression and cell proliferation. Thus, the glucose-regulated antagonism between CREB and Sirt-1 for Hes-1 transcription participates in the metabolic regulation of neurogenesis.