Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of The American Society for Mass Spectrometry, 2(18), p. 218-225, 2007

DOI: 10.1016/j.jasms.2006.09.010

Links

Tools

Export citation

Search in Google Scholar

Characterization of isomeric cationic porphyrins with β-pyrrolic substituents by electrospray mass spectrometry: The singular behavior of a potential virus photoinactivator

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS) have been used to differentiate the 2- and 4-methylpyridyl isomers of free-base and metallated cationic beta-vinylpyridylporphyrins. The analysis by ESI-MS/MS of the deuterated analogs and semiempirical calculations of structural and electronic parameters were also undertaken. The two free-base isomers are easily differentiated by ESI-MS/MS but the presence of a metallic center renders differentiation of the metallated isomers less effective. The data acquired show that of all the studied compounds, the free-base 2-methylpyridyl isomer, which was operative in the in vitro photoinactivation of Herpes simples virus, has a different gas-phase behavior. Local distortion of the macrocycle due to the presence of the beta-vinylpyridyl substituent occurs for all the compounds, but a different electron density distribution can account for the observed gas-phase behavior of this potential virus photoinactivator.