Published in

American Chemical Society, Nano Letters, 5(12), p. 2499-2503, 2012

DOI: 10.1021/nl300665z

Links

Tools

Export citation

Search in Google Scholar

Surfactant Organic Molecules Restore Magnetism in Metal-Oxide Nanoparticle Surfaces

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The properties of magnetic nanoparticles tend to be depressed by the unavoidable presence of a magnetically inactive surface layer. However, outstanding magnetic properties with a room-temperature magnetization near the bulk value can be produced by high-temperature synthesis methods involving capping with organic acid. The capping molecules are not magnetic, so the origin of the enhanced magnetization remains elusive. In this work, we present a real-space characterization on the subnanometer scale of the magnetic, chemical, and structural properties of iron-oxide nanoparticles via aberration-corrected scanning transmission electron microscopy. For the first time, electron magnetic chiral dichroism is used to map the magnetization of nanoparticles in real space with subnanometer spatial resolution. We find that the surface of the nanoparticles is magnetically ordered. Combining the results with density functional calculations, we establish how magnetization is restored in the surface layer. The bonding with the acid's O atoms results in O-Fe atomic configuration and distances close to bulk values. We conclude that the nature and number of molecules in the capping layer is an essential ingredient in the fabrication of nanoparticles with optimal magnetic properties.