Published in

Elsevier, Journal of Invertebrate Pathology, (115), p. 80-85, 2014

DOI: 10.1016/j.jip.2013.10.005

Links

Tools

Export citation

Search in Google Scholar

Biochemical and histopathological alterations in Biomphalaria glabrata due to co-infection by Angiostrongylus cantonensis and Echinostoma paraensei

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The effect of concurrent infection by Echinostoma paraensei and Angiostrongylus cantonensis on the activity of the enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and the concentration of total proteins, uric acid and urea in the hemolymph of Biomphalaria glabrata were investigated. Additionally, histopathological studies were conducted to better understand the dynamics of ontogenic development of both helminths in the host and the possible biochemical effects. Co-infections by helminths and other parasites often occur due to the wide distribution of helminths and the chronic nature of the infection. The biochemical parameters were measured at the end of the seventh week after exposure. The co-infection resulted in a significant decrease in the total proteins concentration in the hemolymph of snails as well as an increase in the nitrogen excretion products, these results showed that the infection leads to exhaustion of free circulating and stored carbohydrates and the infected snails make use alternative substrates, such as free amino acids. So, the protein degradation to release free amino acids causes a decrease in the content of total proteins in the snail host and an amino acids deamination process, increasing the content of ammonium, which needs to be detoxified. This occurs by increasing the urea and uric acid contents. This observation is corroborated by the increase of ALT and AST activities, enzymes directly related to amino group from an amino acid to an α-ketoacid an important step to generate new carbon skeleton for glucose synthesis de novo, as well as new intermediates to the Krebs cycle. Additionally, reduction in the recovery of L3 from the co-infected group (A + E) was observed, since in this association the burden was higher than in the other. Histopathological results showed a change in the distribution of A. cantonensis in the presence of E. paraensei, indicating that the presence of this trematode impairs the dynamic transmission of A. cantonensis.