Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 1(105), p. 216-221, 2008

DOI: 10.1073/pnas.0708074105

Links

Tools

Export citation

Search in Google Scholar

Costs and benefits of cold acclimation in field released Drosophila

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

One way animals can counter the effects of climatic extremes is via physiological acclimation, but acclimating to one extreme might decrease performance under different conditions. Here, we use field releases of Drosophila melanogaster on two continents across a range of temperatures to test for costs and benefit s of developmental or adult cold acclimation. Both types of cold acclimation had enormous benefit s at low temperatures in the field; in the coldest releases only cold-acclimated flies were able to find a resource. However, this advantage came at a huge cost; flies that had not been cold-acclimated were up to 36 times more likely to find food than the cold-acclimated flies when temperatures were warm. Such costs and strong benefit s were not evident in laboratory tests where we found no reduction in heat survival of the cold-acclimated flies. Field release studies, therefore, reveal costs of cold acclimation that standard laboratory assays do not detect. Thus, although physiological acclimation may dramatically improve fitness over a narrow set of thermal conditions, it may have the opposite effect once conditions extend outside this range, an increasingly likely scenario as temperature variability increases under global climate change ; One way animals can counter the effects of climatic extremes is via physiological acclimation, but acclimating to one extreme might decrease performance under different conditions. Here, we use field releases of Drosophila melanogaster on two continents across a range of temperatures to test for costs and benefit s of developmental or adult cold acclimation. Both types of cold acclimation had enormous benefit s at low temperatures in the field; in the coldest releases only cold-acclimated flies were able to find a resource. However, this advantage came at a huge cost; flies that had not been cold-acclimated were up to 36 times more likely to find food than the cold-acclimated flies when temperatures were warm. Such costs and strong benefit s were not evident in laboratory tests where we found no reduction in heat survival of the cold-acclimated flies. Field release studies, therefore, reveal costs of cold acclimation that standard laboratory assays do not detect. Thus, although physiological acclimation may dramatically improve fitness over a narrow set of thermal conditions, it may have the opposite effect once conditions extend outside this range, an increasingly likely scenario as temperature variability increases under global climate change