Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of the American Chemical Society, 50(133), p. 20468-20475, 2011

DOI: 10.1021/ja208642b

Links

Tools

Export citation

Search in Google Scholar

Examining the Effect of the Dipole Moment on Charge Separation in Donor-Acceptor Polymers for Organic Photovoltaic Applications

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A new low band gap copolymer PBB3 containing [6,6']bi[thieno[3,4-b]thiophenyl]-2,2'-dicarboxylic acid bis-(2-butyloctyl) ester (BTT) and 4,8-bis(2-butyloctyl)benzo[1,2-b:4,5-b']dithiophene (BDT) units was synthesized and tested for solar cell efficiency. PBB3 showed a broad absorbance in the near-IR region with a substantially red-shifted (by more than 100 nm) λ(max) at 790 nm as compared to the PTB series of polymers, which have been previously reported. The PBB3 polymer also showed both a favorable energy level match with PCBM (with a LUMO energy level of -3.29 eV) and a favorable film domain morphology as evidenced by TEM images. Despite these seemingly optimal parameters, a bulk heterojunction (BHJ) photovoltaic device fabricated from a blend of PBB3 and PC(71)BM showed an overall power conversion efficiency (PCE) of only 2.04% under AM 1.5G/100 mW cm(-2). The transient absorption spectra of PBB3 showed the absence of cationic and pseudo charge transfer states that were observed previously in the PTB series polymers, which were also composed of alternating thienothiophene (TT) and BDT units. We compared the spectral features and electronic density distribution of PBB3 with those of PTB2, PTB7, and PTBF2. While PTB2 and PTB7 have substantial charge transfer characteristics and also relatively large local internal dipoles through BDT to TT moieties, PTBF2 and PBB3 have minimized internal dipole moments due to the presence of two adjacent TT units (or two opposing fluorine atoms in PTBF2) with opposite orientations or internal dipoles. PBB3 showed a long-lived excitonic state and the slowest electron transfer dynamics of the series of polymers, as well as the fastest recombination rate of the charge-separated (CS) species, indicating that electrons and holes are more tightly bound in these species. Consequently, substantially lower degrees of charge separation were observed in both PBB3 and PTBF2. These results show that not only the energetics but also the internal dipole moment along the polymer chain may be critical in maintaining the pseudocharge transfer characteristics of these systems, which were shown to be partially responsible for the high PCE device made from the PTB series of low band gap copolymers.