Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Audio, Speech and Language Processing, 6(17), p. 1186-1195, 2009

DOI: 10.1109/tasl.2009.2016734

Links

Tools

Export citation

Search in Google Scholar

Characterization of Healthy and Pathological Voice Through Measures Based on Nonlinear Dynamics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, we propose to quantify the quality of the recorded voice through objective nonlinear measures. Quantification of speech signal quality has been traditionally carried out with linear techniques since the classical model of voice production is a linear approximation. Nevertheless, nonlinear behaviors in the voice production process have been shown. This paper studies the usefulness of six nonlinear chaotic measures based on nonlinear dynamics theory in the discrimination between two levels of voice quality: healthy and pathological. The studied measures are first- and second-order Renyi entropies, the correlation entropy and the correlation dimension. These measures were obtained from the speech signal in the phase-space domain. The values of the first minimum of mutual information function and Shannon entropy were also studied. Two databases were used to assess the usefulness of the measures: a multiquality database composed of four levels of voice quality (healthy voice and three levels of pathological voice); and a commercial database (MEEI Voice Disorders) composed of two levels of voice quality (healthy and pathological voices). A classifier based on standard neural networks was implemented in order to evaluate the measures proposed. Global success rates of 82.47% (multiquality database) and 99.69% (commercial database) were obtained.