Elsevier, Molecular and Biochemical Parasitology, 1(179), p. 30-36, 2011
DOI: 10.1016/j.molbiopara.2011.05.007
Full text: Download
Retroposons of the ingi clade are the most abundant transposable elements identified in the trypanosomatid genomes. Some are long autonomous elements (ingi, L1Tc) while others, such as RIME and NARTc, are short non-coding elements that parasitize the retrotransposition machinery of the active autonomous ones for their own mobilization. Here, we identified a new family of short non-autonomous retroposons of the ingi clade, called TSIDER1, which are present in the genome of Salivarian (African) trypanosomes, Trypanosoma brucei, T. congolense and T. vivax, but absent in the T. cruzi and Leishmania spp. genomes and, as such, TSIDER1 is the only retroposon subfamily conserved at the nucleotide level between African trypanosome species. We identified three TvSIDER1 families within the genome of T. vivax and the high level of sequence conservation within the TvSIDER1a and TvSIDER1b groups suggests that they are still active. We propose that TvSIDER1a/b elements are using the Tvingi retrotransposition machinery, as they are preceded by the same conserved pattern characteristic of the ingi6 subclade, which corresponds to the retroposon-encoded endonuclease binding site. In contrast, TcoSIDER1, TbSIDER1 and TvSIDER1c are too divergent to be considered as active retroposons. The relatively low number of SIDER elements identified in the T. congolense (70 copies), T. vivax (32 copies) and T. brucei (22 copies) genomes confirms that trypanosomes have not expanded short transposable elements, which is in contrast to Leishmania spp. (∼2000 copies), where SIDER play a role in the regulation of gene expression.