Published in

Elsevier, Quaternary Geochronology, (22), p. 25-32

DOI: 10.1016/j.quageo.2014.02.003

Links

Tools

Export citation

Search in Google Scholar

The efficiency of charcoal decontamination for radiocarbon dating by three pre-treatments – ABOX, ABA and hypy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Here we report results of a direct inter-comparison of the ability of three radiocarbon pre-treatment techniques to remove radiocarbon contamination introduced by exposing known-radiocarbon-free charcoal made at three different temperatures (300, 400 and 500°C) to environmental contamination on a rainforest floor for one to three years. The initial charcoal had no measureable radiocarbon, but 14C activity increased after environmental exposure to ∼1 pMC after one year (apparent age of ∼40,000 yrs BP) and ∼5 pMC after three years (apparent age of ∼25,000 years). For the 400 and 500°C samples, all techniques were able to reduce contamination by >90%. Acid-base oxidation (ABOX) provided the most reliable decontamination, reducing the radiocarbon activity of the one year samples to background, and reducing the radiocarbon activity of the three year samples to 0.04±0.02 pMC or less (apparent age >56,900 yrs BP). The performance of ABOX was superior to that of both acid-base-acid (ABA) and hydrogen pyrolysis (hypy) treatments, with ABA performing better than hypy in most cases. No technique was able to fully remove decontamination from the 300°C charcoal (although ABOX again removed the most contamination), likely due to the incompletely pyrolized nature of the charcoal which is dominated by aromatic clusters of small ring size. All the techniques rely on removing contaminant carbon faster than indigenous carbon and this condition is not met in the case of charcoal produced at temperatures below ∼350°C. While all pre-treatments are useful for routine sample processing, the results suggest that ABOX is the only technique that can provide reliable decontamination of charcoal of an age close to the dating limit of the radiocarbon dating technique.