Dissemin is shutting down on January 1st, 2025

Published in

American Physiological Society, American Journal of Physiology: Cell Physiology, 6(291), p. C1193-C1197, 2006

DOI: 10.1152/ajpcell.00230.2006

Links

Tools

Export citation

Search in Google Scholar

Mitochondrial transport in processes of cortical neurons is independent of intracellular calcium

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mitochondria show extensive movement along neuronal processes, but the mechanisms and function of this movement are not clearly understood. We have used high-resolution confocal microscopy to simultaneously monitor movement of mitochondria and changes in intracellular [Ca2+] ([Ca2+]i) in rat cortical neurons. A significant percentage (27%) of the total mitochondria in cortical neuronal processes showed movement over distances of >2 μM. The average velocity was 0.52 μm/s. The velocity, direction, and pattern of mitochondrial movement were not affected by transient increases in [Ca2+]i associated with spontaneous firing of action potentials. Stimulation of Ca2+ transients with forskolin (10 μM) or bicuculline (10 μM), or sustained elevations of [Ca2+]i evoked by glutamate (10 μM) also had no effect on mitochondrial transit. Neither removal of extracellular Ca2+, depletion of intracellular Ca2+ stores with thapsigargin, or inhibition of synaptic activity with TTX (1 μM) or a cocktail of CNQX (10 μM) and MK801 (10 μM) affected mitochondrial movement. These results indicate that movement of mitochondria along processes is a fundamental activity in neurons that occurs independently of physiological changes in [Ca2+]i associated with action potential firing, synaptic activity, or release of Ca2+ from intracellular stores.