Published in

Elsevier, Toxicology in Vitro, 5(23), p. 772-779, 2009

DOI: 10.1016/j.tiv.2009.04.002

Links

Tools

Export citation

Search in Google Scholar

Mitochondrial toxicity of the phyotochemicals daphnetoxin and daphnoretin –Relevance for possible anti-cancer application

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Daphnetoxin is a daphnane type orthoester diterpene found exclusively in plants of the family Thymelaeaceae while daphnoretin, a bis-coumarin derivative that is the major constituent of the bark of some plants of this family, can also be found in Leguminosae and Rutaceae. These two compounds are recognized to have different biological effects, including a possible anti-cancer activity. The subject of the present research was to compare their mitochondrial toxicity and also investigate a possible selectivity towards tumor cell lines. Wistar rat liver mitochondria and three distinct cell lines were used to investigate compound-induced toxicity. The results indicate that both test compounds are toxic to isolated mitochondrial fractions, especially when used at concentrations higher than 100 microM. However, daphnetoxin presented the highest toxicity including increased proton leak in the inner mitochondrial membrane, increased induction of the mitochondrial permeability transition pore, inhibition of ATP synthase and inhibition of the mitochondrial respiratory chain. Both compounds also inhibited cell proliferation, regardless of the cell line used. Up to the maximal concentration tested in cells, no mitochondrial effects were detected by vital epifluorescence imaging, indicating that inhibition of cell proliferation may also originate from mitochondrial-independent mechanisms. The results warrant careful assessment of toxicity vs. pharmacology benefits of both molecules.