Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, ACS Nano, 10(9), p. 9528-9541, 2015

DOI: 10.1021/acsnano.5b04129

Links

Tools

Export citation

Search in Google Scholar

Expression-Enhanced Fluorescent Proteins Based on Enhanced Green Fluorescent Protein for Super-resolution Microscopy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

"Smart fluorophores", such as reversibly switchable fluorescent proteins (RSFPs), are crucial for advanced fluorescence imaging. However, only a limited number of such labels is available and many display reduced biological performance compared to more classical variants. We present the development of robustly photoswitchable variants of EGFP, named rsGreens, that display up to 30-fold higher fluorescence in E. coli colonies grown at 37°C and more than 4-fold higher fluorescence when expressed in HEK293T cells compared to their ancestor protein rsEGFP. This enhancement is not due to an intrinsic increase in the fluorescence brightness of the probes, but rather due to enhanced expression levels that allow many more probe molecules to be functional at any given time. We developed rsGreens displaying a range of photoswitching kinetics and show how these can be used for multi-modal diffraction-unlimited fluorescence imaging such as pcSOFI and RESOLFT, achieving a spatial resolution of ~70 nm. By determining the first ever crystal structures of a negative reversibly switchable FP derived from Aequorea victoria in both the "on"- and "off"-conformation we were able to confirm the presence of a cis-trans isomerization and provide further insights into the mechanisms underlying the photochromism. Our work demonstrates that genetically encoded "smart fluorophores" can be readily optimized for biological performance, and provides a practical strategy for developing maturation- and stability-enhanced photochromic fluorescent proteins.