Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 2(134), p. 441-448, 2003

DOI: 10.1016/s1095-6433(02)00315-x

Links

Tools

Export citation

Search in Google Scholar

Mitochondrial KATP channels and sarcoplasmic reticulum influence cardiac force development under anoxia in the Amazonian armored catfish Liposarcus pardalis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The contribution of alterations in mitochondrial K(ATP) channel activity and the sarcoplasmic reticulum (SR) to anaerobic cardiac function in the anoxia tolerant armored catfish Liposarcus pardalis were assessed. K(ATP) channels contribute to hypoxic cardioprotection in mammals, but little is known of their action in more hypoxia tolerant animals. Anoxia resulted in a decrease in force in isometrically contracting ventricle strips to approximately 40% of the pre-anoxic level. This was maintained for at least 2 h. Upon reoxygenation, hearts recovered to the same level as control preparations. Treatment with 5-hydroxydecanoic acid (5HD), a specific mitochondrial K(ATP) blocker significantly increased force in preparations during anoxia and caused hypercontracture at reoxygenation. Ryanodine, a specific inhibitor of SR function, significantly increased force loss in ventricle preparations under anoxia. Results show that mitochondrial K(ATP) channel activity and SR function are important in anaerobic and post-anaerobic contractility in armored catfish heart.