Published in

Taylor and Francis Group, Autophagy, 2(5), p. 256-258

DOI: 10.4161/auto.5.2.7591

Links

Tools

Export citation

Search in Google Scholar

Trypanosome TOR as a major regulator of cell growth and autophagy

Journal article published in 2009 by Antonio Barquilla, Miguel Navarro ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Trypanosomatid protozoa parasites are responsible for tropical diseases, and undergo complex life cycles involving developmental forms adapted to insect vectors and vertebrate hosts. During their life cycle these parasites proceed through different forms in response to dramatic environmental changes and/or developmentally regulated programs. Successful progression of the parasite through its life cycle is highly dependent on the capacity of adaptation to distinct stresses involving processes such as autophagy. In eukaryotes, target of rapamycin (TOR) protein kinases act as a sensor, which integrates the nutritional and energetic status, adjusting cell metabolism and growth. Compromising cell viability in yeast and mammals leads to a reduction of TOR function, triggering processes aimed to overcome unfavorable conditions. This is partly achieved by TOR-mediated regulation of protein synthesis and recycling of cellular components by autophagy. In the last few years, autophagy has been described during developmental differentiation processes in Trypanosomatidae. However, no link between TOR signalling, autophagy, and differentiation has been described so far. This addendum is a commentary to the work published by our group,(1) in which we discuss the possible role of TOR kinases, as a controller of cell growth and autophagy, in the regulation of differentiation processes during Trypanosomatids life cycles.