Published in

World Scientific Publishing, International Journal of Nanoscience, 03(13), p. 1450020

DOI: 10.1142/s0219581x14500203

Links

Tools

Export citation

Search in Google Scholar

Surface Roughness Characterization of ZnO: TiO2-Organic Blended Solar Cells Layers by Atomic Force Microscopy and Fractal Analysis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The objective of this work is to quantitatively characterize the 3D complexity of ZnO : TiO 2-organic blended solar cells layers by atomic force microscopy and fractal analysis. ZnO : TiO 2-organic blended solar cells layers were investigated by AFM in tapping-mode in air, on square areas of 25 μm2. A detailed methodology for ZnO : TiO 2-organic blended solar cells layers surface fractal characterization, which may be applied for AFM data, is presented. Detailed surface characterization of the surface topography was obtained using statistical parameters, according with ISO 25178-2: 2012. The fractal dimensions Df values (all with average ± standard deviation), obtained with morphological envelopes method, for: blend D1 ( P 3 HT : PCBM : ZnO : TiO 2 blend with ratio 1:0.35:0.175:0.175 mg in 1 ml of Chlorobenzene) is Df = 2.55 ± 0.01; and for blend D2 ( P 3 HT : PCBM : ZnO : TiO 2 blend with ratio 1:0.55:0.075:0.075 mg in 1 ml of Chlorobenzene) is Df = 2.45 ± 0.01. Denoting the ratios in 1 ml of Chlorobenzene with D1 and D2 articles. The 3D surface roughness of samples revealed a fractal structure at nanometer scale. Fractal and AFM analysis may assist manufacturers in developing ZnO : TiO 2-organic blended solar cells layers with better surface characteristics and provides different yet complementary information to that offered by traditional surface statistical parameters.