Published in

American Society for Microbiology, Applied and Environmental Microbiology, 3(82), p. 770-777, 2016

DOI: 10.1128/aem.02651-15

Links

Tools

Export citation

Search in Google Scholar

Diversity and ecology of viruses in hyperarid desert soils

Journal article published in 2015 by Olivier Zablocki, Evelien M. Adriaenssens ORCID, Don Cowan
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT In recent years, remarkable progress has been made in the field of virus environmental ecology. In marine ecosystems, for example, viruses are now thought to play pivotal roles in the biogeochemical cycling of nutrients and to be mediators of microbial evolution through horizontal gene transfer. The diversity and ecology of viruses in soils are poorly understood, but evidence supports the view that the diversity and ecology of viruses in soils differ substantially from those in aquatic systems. Desert biomes cover ∼33% of global land masses, and yet the diversity and roles of viruses in these dominant ecosystems remain poorly understood. There is evidence that hot hyperarid desert soils are characterized by high levels of bacterial lysogens and low extracellular virus counts. In contrast, cold desert soils contain high extracellular virus titers. We suggest that the prevalence of microbial biofilms in hyperarid soils, combined with extreme thermal regimens, exerts strong selection pressures on both temperate and virulent viruses. Many desert soil virus sequences show low values of identity to virus genomes in public databases, suggesting the existence of distinct and as-yet-uncharacterized soil phylogenetic lineages (e.g., cyanophages). We strongly advocate for amplification-free metavirome analyses while encouraging the classical isolation of phages from dominant and culturable microbial isolates in order to populate sequence databases. This review provides an overview of recent advances in the study of viruses in hyperarid soils and of the factors that contribute to viral abundance and diversity in hot and cold deserts and offers technical recommendations for future studies.