Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Biotechnology and Bioengineering, 2(102), p. 436-444, 2009

DOI: 10.1002/bit.22072

Links

Tools

Export citation

Search in Google Scholar

Characterization of Electrochemically Active Bacteria Utilizing a High-Throughput Voltage-Based Screening Assay

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Metal reduction assays are traditionally used to select and characterize electrochemically active bacteria (EAB) for use in microbial fuel cells (MFCs). However, correlating the ability of a microbe to generate current from an MFC to the reduction of metal oxides has not been definitively established in the literature. As these metal reduction assays may not be generally reliable, here we describe a four- to nine-well prototype high throughput voltage-based screening assay (VBSA) designed using MFC engineering principles and a universal cathode. Bacterial growth curves for Shewanella oneidensis strains DSP10 and MR-1 were generated directly from changes in open circuit voltage and current with five percent deviation calculated between each well. These growth curves exhibited a strong correlation with literature doubling times for Shewanella indicating that the VBSA can be used to monitor distinct fundamental properties of EAB life cycles. In addition, eight different organic electron donors (acetate, lactate, citrate, fructose, glucose, sucrose, soluble starch, and agar) were tested with S. oneidensis MR-1 in anode chambers exposed to air. Under oxygen exposure, we found that current was generated in direct response to additions of acetate, lactate, and glucose.