Published in

Elsevier Masson, Analytical Biochemistry, (452), p. 54-66

DOI: 10.1016/j.ab.2014.02.011

Links

Tools

Export citation

Search in Google Scholar

Unconventional surface plasmon resonance signals reveal quantitative inhibition of transcriptional repressor EthR by synthetic ligands

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

EthR is a mycobacterial repressor that limits the bioactivation of ethionamide, a commonly used anti-tuberculosis second-line drug. Several efforts have been deployed to identify EthR inhibitors abolishing the DNA-binding activity of the repressor. This led to the demonstration that stimulating the bioactivation of ETH through EthR inhibition could be an alternative way to fight Mycobacterium tuberculosis. We propose a new SPR methodology to study the affinity between inhibitors and EthR. Interestingly, the binding between inhibitors and immobilized EthR produced a dose dependent negative SPR signal. We demonstrated that this signal reveals the affinity of the small molecules for the repressor. The affinity constants (KD) correlated with their capacity to inhibit the binding of EthR to DNA. We hypothesize that conformational changes of EthR during ligand interaction could be responsible for this SPR signal. Practically, this unconventional result open perspectives to the development of SPR assay that would at the same time tough on the structural changes of the target upon binding with an inhibitor and on the binding constant of this interaction.