Published in

Oxford University Press, ICES Journal of Marine Science, 6(72), p. 1985-1998, 2015

DOI: 10.1093/icesjms/fsv069

Links

Tools

Export citation

Search in Google Scholar

Characterization of distinct bloom phenology regimes in the Southern Ocean

Journal article published in 2015 by Jean-Baptiste Sallee, J. Llort ORCID, A. Tagliabue, Marina Lévy
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractIn this study, we document the regional variations of bloom phenology in the Southern Ocean, based on a 13-year product of ocean colour measurements co-located with observation-based estimates of the mixed-layer depth. One key aspect of our work is to discriminate between mixed-layer integrated blooms and surface blooms. By segregating blooms that occur before or after the winter solstice and blooms where integrated and surface biomass increase together or display a lag, we define three dominating Southern Ocean bloom regimes. While the regime definitions are solely based on bloom timing characteristics, the three regimes organize coherently in geographical space, and are associated with distinct dynamical regions of the Southern Ocean: the subtropics, the subantarctic, and the Antarctic Circumpolar Current region. All regimes have their mixed-layer integrated onset between autumn and winter, when the daylength is short and the mixed layer actively mixes and deepens. We discuss how these autumn–winter bloom onsets are controlled by either nutrient entrainment and/or reduction in prey-grazer encounter rate. In addition to the autumn–winter biomass increase, the subantarctic regime has a significant spring biomass growth associated with the shutdown of turbulence when air–sea heat flux switches from surface cooling to surface warming.