Published in

Human Kinetics, International Journal of Sport Nutrition and Exercise Metabolism, 3(24), p. 286-295, 2014

DOI: 10.1123/ijsnem.2013-0191

Links

Tools

Export citation

Search in Google Scholar

The Effects of Two Different Doses of Calcium Lactate on Blood pH, Bicarbonate, and Repeated High-Intensity Exercise Performance

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We investigated the effects of low- and high-dose calcium lactate supplementation on blood pH and bicarbonate (Study A) and on repeated high-intensity performance (Study B). In Study A, 10 young, physically active men (age: 24 ± 2.5 years; weight: 79.2 ± 9.45 kg; height: 1.79 ± 0.06 m) were assigned to acutely receive three different treatments, in a crossover fashion: high-dose calcium lactate (HD: 300 mg·kg−1 body mass), low-dose calcium lactate (LD: 150 mg·kg−1 body mass) and placebo (PL). During each visit, participants received one of these treatments and were assessed for blood pH and bicarbonate 0, 60, 90, 120, 150, 180, and 240 min following ingestion. In Study B, 12 young male participants (age: 26 ± 4.5 years; weight: 82.0 ± 11.0 kg; height: 1.81 ± 0.07 m) received the same treatments of Study A. Ninety minutes after ingestion, participants underwent 3 bouts of the upper-body Wingate test and were assessed for blood pH and bicarbonate 0 and 90 min following ingestion and immediately after exercise. In Study A, both HD and LD promoted slight but significant increases in blood bicarbonate (31.47 ± 1.57 and 31.69 ± 1.04 mmol·L−1, respectively) and pH levels (7.36 ± 0.02 and 7.36 ± 0.01, respectively), with no effect of PL. In Study B, total work done, peak power, mean power output were not affected by treatments. In conclusion, low- and high-dose calcium lactate supplementation induced similar, yet very discrete, increases in blood pH and bicarbonate, which were not sufficiently large to improve repeated high-intensity performance.