Elsevier, Journal of Biotechnology, 3-4(153), p. 145-152, 2011
DOI: 10.1016/j.jbiotec.2011.03.021
Elsevier, Journal of Bioscience and Bioengineering, (108), p. S8
DOI: 10.1016/j.jbiosc.2009.08.031
Full text: Unavailable
Previously, we have shown that simple paucimannosidic N-glycan structures in insect Drosophila S2 cells arise mainly because of β-N-acetylglucosaminidase (GlcNAcase) action. Thus, in an earlier report, we suppressed GlcNAcase activity and clearly demonstrated that more complex N-glycans with two terminal N-acetylglucosamine (GlcNAc) residues were then synthesized. In the present work, we investigated the synergistic effects of β-1,4-galactosyltransferase (GalT) expression and GlcNAcase suppression on N-glycan patterns. We found that the N-glycan pattern of human erythropoietin secreted by engineered S2 cells expressing GalT but not GlcNAcase was complete, even in small portion, except for sialylation; the N-glycan structures had two terminal galactose (Gal) residues. When GalT was expressed but GlcNAcase was not inhibited, N-glycan with GlcNAc and Gal at only one branch end was synthesized. Therefore, it will be possible to express a complete functional human glycoprotein in engineered Drosophila S2 cells by suppressing GlcNAcase and co-expressing additional glycosyltransferases of N-glycosylation pathway.